

Energy research Centre of the Netherlands

Geological CO2 Storage and Leakage

Bob van der Zwaan (ECN and Columbia University)

Work with Reyer Gerlagh (Manchester University) and Koen Smekens (ECN)

www.ecn.nl

CO₂ leakage

Energy research Centre of the Netherlands

Outline

- I. Leakage of geologically stored CO₂
- II. Does CO₂ leakage matter?
- III. Approach
- IV. Results with MARKAL
- V. Results with DEMETER
- VI. Comparison and discussion
- VII. Conclusions

Research done under the EU-funded Transust.Scan project See: www.transust.org

I. CO₂ leakage

IPCC Special Report on CO2 Capture and Storage (2005) :

"Observations from engineered and natural analogues as well as models suggest that the fraction retained in appropriately selected and managed geological reservoirs is very likely to exceed 99% over 100 years and is likely to exceed 99% over 1000 years."

Today, our natural scientific understanding of geological CO₂ migration and leakage processes is limited, and values of possible leakage rates only speculative. Cap rock integrity seems essential.

II. Does CO2 leakage matter?

- What are possible leakage rates from a geo-physical and geochemical point of view?
- What are acceptable leakage rates from a climatic and economic point of view?
- Are the latter higher or lower than leakage rate speculations based on the natural sciences?
- How urgent is it to increase our natural scientific understanding of possible leakage phenomena?

III. Climatic and economic implications of leakage

<u>Back-of-the-envelope calculation for CO₂ leakage rate λ </u> $\lambda = 1\%/yr$: after 100 yrs 37% is left: probably *unacceptable* $\lambda = 0.1\%/yr$: after 100 yrs 90% is left: may well be *acceptable*

$$NPV_{leakage} = \tau_{\lambda} = \int_{0}^{\infty} \lambda e^{-(r+\lambda)t} \tau_{t} dt \longrightarrow \tau_{\lambda} = \tau_{0} \int_{0}^{\infty} \lambda e^{(-r+g-\lambda)t} dt = \frac{\lambda}{\lambda + r - g} \tau_{0}$$

<u>Locally</u>, leakage rate may be time-dependent (bell- or S-shaped). <u>Globally</u>, CO₂ leakage rate may increase or decrease over time, depending on the knowledge we acquire about physical leakage processes of individual storage sites.

III. Two energy-environment-economy models

The above questions may be addressed through EEE integrated assessment models, with endogenous technical change through learning curves.

MARKAL: Bottom-up energy systems model for Europe; Many energy technologies, but reduced economic features; Constant leakage rates: 0.05%/yr 0.1%/yr, 0.5%/yr, 1.0%/yr.

<u>DEMETER</u>: Top-down general equilibrium model for the World; Global economy, but only three basic energy resources; Constant leakage rates: 0.5%/yr, 1%/yr, 2%/yr.

7

IV. Results with MARKAL

Figure 1. Annual electricity generation (in TWh) from renewables, nuclear, fossil fuels with CCS, and fossil fuels without CCS. Scenario (a) is the base case without climate change constraint; in scenario (b) a climate constraint of 550 ppmv CO_2 concentration is imposed; in scenarios (c), (d), (e), and (f) the same climate constraint of 550 ppmv is assumed, plus a geological CO_2 leakage rate of, respectively, 1%/yr, 0.5%/yr, 0.1%/yr, and 0.05%/yr.

8

IV. Results with MARKAL

Figure 4. Cumulative amount of CO_2 captured in the electricity sector (including both fossilbased and biomass-based power plants, expressed in $MtCO_2$) in scenarios (a)-(f).

V. Results with DEMETER

FIGURE 3.Cumulative geological CO₂ storage (GtC) for various leakage scenarios (450 ppmv target).

FIGURE 4. Annual geological CO₂ seepage (GtC/yr) for various leakage scenarios (450 ppmv target).

V. Results with DEMETER

FIGURE 5. Carbon tax (US\$/tC) for various leakage scenarios (450 ppmv target).

FIGURE 6. Share of carbon tax to CCS (%) for various leakage scenarios (450 ppmv target).

VI. Comparison MARKAL - DEMETER

FIGURE 7. Optimal carbon tax (in US\$/tC) as calculated by MARKAL and DEMETER under a stringent climate constraint for two values of the leakage rate (1 and 0.5%/yr).

VII. Conclusions

- MARKAL: A CO₂ leakage rate of up to 0.5 %/yr is allowable from an overall energy system cost minimisation point of view.
- DEMETER: CCS with CO₂ leakage of even a few %/yr possesses non-negligible economic and climatic control value.
- In both cases, economically and climatically acceptable leakage rates are well above our current geo-scientific speculations.
- Hence, from a combined economic-climatic point of view at least, there seems today little urgency to increase our natural scientific understanding of possible leakage rates.
- But, of course, for other reasons increasing our understanding of geological CO2 leakage remains very important.

VII. Papers

• Smekens, K. and B.C.C. van der Zwaan (2006), "Atmospheric and Geological CO2 Damage Costs in Energy Scenarios", *Environmental Science and Policy*, 9, 3.

• Gerlagh, R. and B.C.C. van der Zwaan (2006), "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Capture or Renewables, Taxes or Subsidies?", *The Energy Journal*, 27, 3, pp.25-48.

• van der Zwaan, B.C.C. and K. Smekens (2007), "CO2 Capture and Storage with Leakage in an Energy-Climate Model", *Environmental Modeling and Assessment,* forthcoming.

• van der Zwaan, B.C.C. and R. Gerlagh (2007), "The Economics of Geological CO2 Storage and Leakage", *Under review*.