

www.TranSust.org Scanning Policy Scenarios for the Transition to Sustainable Economic Structures

### Modeling of water resources: applications of the models *KLUM-W* and *GTAP-W*

P. Michael Link & Timm Sauer Research Unit Sustainability and Global Change Center for Marine and Atmospheric Sciences Hamburg University, Hamburg, Germany

> GTAP-W assessments by Katrin Rehdanz & Alvaro Calzadilla Hamburg University, Hamburg, Germany Richard S.J. Tol ESRI, Dublin, Ireland



Presentation at the TranSust.Scan Conference Chia Laguna, Sardegna, September 28, 2007 niversität Hamburg







## Outline

#### Introduction

water

land use

KLUM-W

concepts

KLUM

KLUM-W@ Global-FASOM

GTAP-W

description

scenarios

results

Conclusion

summary



Part I: Introduction

- the importance of water resources
- concepts of land use modeling
- Part II: KLUM-W
  - concepts of KLUM / KLUM-W
    - evaluation of the stand-alone version of *KLUM*
    - initial analyses with KLUM-W @ Global-FASOM
- Part III: GTAP-W
  - description of GTAP-W
  - scenarios of water efficiency assessments
  - application and results
- Part IV: Conclusions
  - summary and first insights



Water availability and use

www.TranSust.org

Scanning Policy Scenarios for the Transition to

#### Introduction

land use

water

KLUM-W

concepts

KLUM

KLUM-W@ Global-FASOM

> GTAP-W description scenarios

> > results

Conclusion

summary

UH A

- The main users are agriculture, industry and domestic water use
- About 70% of water resources are used in agriculture
- Unfortunately, water resources are unevenly spread over the globe
- In some regions water resources are seriously under pressure
- This tendency is likely to worsen
- Increase the import of water-intensive products to arid areas to relieve water stress
- Seek improvements in the efficiency of irrigation systems and water consumption



# www.TranSust.org Scanning Policy Scenarios for the Transition to Sustainable Economic St

## Global land use modeling

#### Introduction

water

land use

KLUM-W

concepts

KLUM

KLUM-W@ Global-FASOM

GTAP-W

description scenarios

results

Conclusion

summary



• Global models tend to be disciplinary:

- emphasis on geography (based on land suitability, interested in spatial patterns)
- emphasis on economy (based on profit maximization, interested in effect on economy)
- Some integrated approaches
  - comprehensive: Not appropriate for coupling purposes
  - empirical / rule-based: Neglecting economic motivation and dynamic market feedbacks
  - rarely consider irrigation cost and water scarcity





### $KLUM \rightarrow KLUM - W$

### Initial objective of KLUM:

- design a land use model that is complex enough to describe essential economic and geographic aspects of land use decisions
  - and simple enough to enable online coupling and global long-term projections

#### Need for an extension of KLUM:

- no distinction between rainfed and irrigated yields
- no consideration of management options and related cost
- unconstrained water availability
- Universität Hamburg

concepts KLUM

Introduction

water

land use

KLUM-W

KLUM-W@ Global-FASOM

GTAP-W

description

scenarios

results

Conclusion

summary













### Crop patterns

#### Introduction

ZVVAV

water

land use

KLUM-W

concepts

KLUM

KLUM-W@ Global-FASOM

GTAP-W

description

scenarios

results

Conclusion

summary







### Individual crops

#### Introduction

ZNA

water

land use

KLUM-W

concepts

KLUM

KLUM-W@ Global-FASOM

GTAP-W

description

scenarios

results

Conclusion

summary





### KLUM-W @ Global-FASOM

#### Introduction

water

land use

#### KLUM-W

concepts

KLUM

KLUM-W@ Global-FASOM

GTAP-W

description

scenarios

results

Conclusion

summary

Generated data and computation routines on irrigation by KLUM-W have been linked with *Global-FASOM* (Forest and Agricultural Sector Optimization Model) to obtain first results on the relation between land scarcity, crop prices, trade, irrigation cost and water-use intensity.





Results from the modeling framework Global FASOM / KLUM-W: Relation between land scarcity and irrigation intensity ZMAN

Modeling framework GTAP-W

Introduction

water

KLUM-W

concepts

KLUM KLUM-W@ Global-FASOM

GTAP-W

description

scenarios

results

Conclusion

summary

 GTAP-W (v2) is a standard static CGE model calibrated for 2001 using agriculture and water data from IMPACT

www.TranSust.org Scanning Policy Scenarios for the Transition

- 16 regions
- 22 sectors (7 agricultural sectors)
- 6 primary factors (rainfed land, irrigated land, irrigation, labor, capital and natural resources)
- new production structure: separation of rainfed and irrigated agriculture
- substitution possibilities between irrigation and other primary factors





### Mean irrigation efficiency

Introduction water 3.00 land use KLUM-W 2.50 concepts Irrigation efficiency KLUM 2.00 KLUM-W@ **Global-FASOM** 1.50 **GTAP-W** description 1.00 scenarios results 0.50 Conclusion 0.00 summary usa can weu jpk anz cee fsu mde cam sam sas sea chi naf ssa sis **GTAP-W** Regions



Red: Water stressed regions











# Change in regional welfare (1)

FranSust.Scan









# Thank you for your attention.







www.TranSust.org Scanning Policy Scenarios for the Transition to Sustainable Economic Structures

ZVVAV