The 2006-07 drought in Australia: analysis in a water enhanced version of TERM

Peter Dixon, Maureen Rimmer and Glyn Wittwer

Centre of Policy Studies

presented by Mark Horridge

Climate Change and Water

- With growing population and incomes, water is getting scarcer.
- We need to use less fossil energy, but
- This can conflict with using less water, eg
 - desalination: guzzles energy
 - bio-fuels: guzzle water
- Climate change may reduce rainfall in some places
- We *think* a warmer climate may reduce SW Australian rainfall.

THIS PAPER

• What is the economic cost of drought in Australia, and how far may water trading alleviate that cost ?

Australia and Drought

Like elsewhere

- Agriculture is 90% of the problem:
- Farmers want a great deal of water at little or no cost.
- Not much data about the contribution of water to farm output, or the possible response of farmers to volume water charging.

Special to Australia

- Agriculture pays its way.
- A recurring drought cycle provides data about effect on farm output of water shortages.
- Beginnings of a water trading system.
- Around 10 years of attempts to model water use with CGE models.

Irrigation, Drought, and Warming

- Irrigation important for several crops.
- Irrigation water comes from the river.
- Only river water might be charged for.
- River inflow = Rainfall Evaporation
- 10% less rain means >>10% reduction in river
- Moreover, warming has increased evaporation.
- Farmers have been motivated to adopt practices which reduce runoff
 - tree planting
 - building own dams
- Some very low-hanging fruit
 - rice, cotton, unplugged artesian wells
- A problem of jurisdictions (States Rights)

Some Water Modelling Problems

- Water usage behaviour varies by crop, region, season, but
- Typical CGE model deals with annual values for broad national sectors
- How does water enter into the agricultural production function?
 - Not much helpful econometrics
 - Crop switching is an alternative to water-saving
 - unpriced inputs pose some special problems

Simplest modeling approach

- Leontief:
 - Within each sector/region, water use proportional to output.
 - Optionally, water pricing (like a tax on output]
- No direct way for water scarcity [prices] to lead to greater water efficiency.
- But indirect ways:
 - eat less vegetables
 - virtual water trade

Variation

- [water use/output] an arbitary function of water price
 - compatible with cost-minimizing behaviour ?

- Assumes water cost proportional to use, and:
- Water expenditure = contribution to output value of water input
 - Poor assumption with cheap or unpriced water
- Physical not monetary units
- Often water price AND quantity are perceived to be exogenous

Another method Output -----Water Capital Labour Land

- Water supply exogenous: it affects efficiency with which other inputs are used.
- Con: Water price rise does not automatically lead to water saving

Our strategy

- Lacking firm evidence, we hope to tell a plausible story.
- That plausibility standard -- the comparison with experience -- requires good sectoral and regional detail:
- eg, we must speak not of water use in Agriculture but of Rice in Northern Victoria.
- Our vehicle.... A detailed regional CGE model

TERM: a 'Bottom-Up' regional CGE model

- A series of separate standard CGE models, linked by trade and factor movements.
- Computationally efficient:

[Nsectors x Nregions] up to 3000

- Data strategy: construct master database with more sector and region detail than can be used: then aggregate for specific problem.
- First Australian version developed 2002
 - database has 169 sectors and 56 regions
- Very useful where:
 - smaller regions are needed to track natural features such as climatic zones or river watersheds.
 - Supply-side constraints are specific to small regions (water shortage).

The Enormous Regional Model

This version of TERM

- 35 industries (17 agricultural);
- 28 commodities (10 agricultural);
- Agricultural output mix varies by region;
- 18 regions inside Australia
 - clustered around Murray-Darling Basin;
- additions and modifications to better model farm water use and trading.

Simulation Regions

- NorthernNSW
- CentrlWstNSW
- MurrayNSW
- WimmeraVIC
- LoddonCmpVIC
- OvensMrryVIC

NorthWestNSW MrmbidgeeNSW FarWestNSW

RoNSW

MalleeVIC GoulbournVIC RoVIC

- DarlSWQld
- MurrayLndsSA

RoQLD RoSA

• RoA

The 17 Agricultural Industries

DRY LAND IRRIGATED CerealDryL Cereallrig **Rice** DairyCatDryL **DairyCatIrig OthLivstoDry OthLivstolrg CottonDryL** CottonIrig Grapes **Vegetables FruitDryL** FruitIrig **SugarCanDryL SugarCanIrig OthAgriDry OthAgrilrig**

The Industries

- Distinguish the main water users in the study area
- Are in pairs (Irrigated and Dry-Land), representing 2 ways of growing the same commodity.
- Irrigated crops use water in fixed proportion.
- During water shortage, land may shift from irrigated to dry-land use.
- Water trading, when allowed, allows water to flow between irrigated technogies within a group of regions.

Irrigated Sector needs Irrigated Land with water.

Irrigable Land, for which no water is now available, can be used by the Dry-Land sector.

Both land types can move between sectors (CET)

The Scenarios

Table 1: Drought means:

- a reduction in irrigated land
- reduced efficiency for dry-land technologies

Limited trading scenario

- water trading within (not between) regions
- no water trades between crops and livestock sectors

Water trading scenario

- water trading within AND between regions
- water trading between irrigated crops and livestock sectors

Rainfall deficiencies during 2006

Commonwealth of Australia 2007, Australian Bureau of Meteorology

Table 1 Drought technology shocks

	Water	Cereal Dry-land	Dry-land pasture	Cotton Dry-land	Fruit Dry- land	Sugar Cane Dry- land	Other Agricultu re Dry-
RoNSW	80	66.7	0.0	-	76.9	76.9	66.7
NorthernNSW	80	40.0	83.3	71.4	71.4	-	50.0
CentrlWstNSW	60	50.0	<u>66.7</u>	50.0	50.0	-	50.0
MrmbidgeeNSW	30	40.0	57.0	40.0	40.0	-	40.0
•••••	••	••	••	••	••	••	••
RoVIC	40	50.0	77.0	-	50.0	-	50.0
WimmeraVIC	30	40.0	57.0	-	40.0	-	40.0
OvensMrryVIC	30	40.0	57.0	-	40.0	-	40.0
RoQLD	80	66.7	76.9	66.7	66.7	66.7	66.7
DarlSWQld	60	66.7	<u>66.7</u>	66.7	66.7	-	66.7
MurrayLndsSA	50	40.0	57.0	-	47.6	-	47.6
RoA	50	66.7	71.5	62.5	62.5	-	<u>66.7</u>
Water for irriga	100 = normal		DryLand productivity 22				

Table 3: Sectoral Effects of Trading

	Limited	Trading	Water Trading		
National output	Output	Price	Output	Price	
Cereals	-50.9	45.8	-49.9	44.0	
Rice	-90.8	66.3	-93.9	70.8	
DairyCattle	-2.8	12.2	-3.4	14.5	
OtherLivestock	-5.3	6.5	-5.3	6.4	
Cotton	-11.7	35.3	-10.1	28.2	
Grapes	-12.4	64.7	-5.3	24.0	
Vegetables	-6.5	20.1	-2.0	3.7	
Fruit	-7.8	25.2	-3.3	9.5	
Sugar cane	-9.8	54.2	-8.3	44.9	
Other Agri	-10.3	45.9	-8.3	36.3	

Table 3: Macro Outcomes

	Limited water trac	ling	Water trading		
Real Hou	-1.54		-1.32		
Real Inv	-1.36		-1.18		
Real Gov	0		0		
Exp Vol	-1.81		-1.69		
Real GDP	-1.43		-1.26		
Agg Employ	-0.84		-0.68		
Avg real wage	-0.86		-0.74		
Agg Cap Stock	0.00		0.00		
		\setminus /			
		Difference = \$A 1.2 billion			
Avg real wage Agg Cap Stock	-0.84 -0.86 0.00	Difference = \$A 1.2 billion	-0.74 0.00		

Future Research

Even more regional detail

regions that match hydrology

Timescale:

- a year is too short to capture preservation behaviour (animals, vines)
- trading water between years

TERM sourcing mechanisms

27

TERM/MMRF data process

- A sophisticated and standardized automatic process for creating a multi-regional database.
- Little additional data is needed:
 - National IO table
 - Region shares of industry outputs
 - Other regional data is optional
- Produces full regional IO tables and trade matrices
- Usually, gravity/distance formulae used to create inter-regional trade matrices
- Assumes similar technology in all regions
- The secret: many detailed sectors:
 - rice growing technology the same in all regions
 - "agriculture" technology NOT the same in all regions