

Long term mitigation objectives vs Short term transportation targets in the European Union

Frédéric Ghersi, CIRED Simon McDonnell, UCD

> C.I.R.E.D. UNITÉ MIXTE DE RECHERCHE EHESS ET CNRS - UMR 8568 JARDIN TROPICAL 45 BIS AVENUE DE LA BELLE GABRIELLE 94736 NOGENT-SUR-MARNE CEDEX - FRANCE

A dramatic EU Factor 4 scenario has virtually no impact on road mobility.

It rather induces a combination of efficiency gains and technology switching.

Because of its strong inertia,

road transportation is not significantly impacted by an F4 scenario before 2020.

Pre-2020 biofuel shares and gCO₂ per km are little affected by the F4 scenario.

The corresponding 2010/15/20 and 2012/20 targets are unaffectedly missed.

Bruxelles, 26 novembre 2008

- 1. EU transportation trends and policy responses
- 2. Model description (in broad strokes!)
- 3. 2 Macroeconomic & energy scenarios
- 4. Road transportation in the 2 scenarios

European road transportation trends

- Sustained growth in demand
 - Overall mobility: 35 km *per cap. per* day (x2 since 1970)
 - Passenger cars: +19% pkm from 1995 to 2004,
 - Road freight: +35% tkm from 1995 to 2004
- Increased modal dominance: road accounts for 85% pkm, 44% tkm and 67% of final oil consumption
- Consequences
 - 85% of transport CO₂ (itself 28% of total emissions, +23% since 1990)
 - increasing economic costs and environmental damages

European Policy Responses 1 Transportation White Paper (2001/6)

• Statement of purpose

- Development on 1992 white paper
- Recognition of transport externalities beyond movement of goods/services – sustainability
- Key objectives:
 - Maintain high mobility
 - Environment, energy supply etc.
 - Innovate in support of first two aims allowing for increased sustainability and efficiency
- 60 EU level specific measures (13 areas), 2010 horizon, many extended to 2020.
- Specific long term beyond the scope of the White Paper

European Policy Responses 2 Sustainable Development Strategy (2001/6)

- Transport meet society's economic, social and environmental needs & minimising neg. externalities
 - Decouple economic growth & transport demand
 - Sustainable energy use, reduce GHG and local emissions
 - Mode shares back to 1998 by 2010
- Objectives incorporated into EU policymaking
 - 2°C cap on temp increases over century over pre-industrial levels (60-80% reduction)
 - CO2: overall and g/km with diff. type (130/10 g CO2/km)
 - Local emissions: generalisation of EURO V/VI
 - Modal shares back to 1998 by 2010
 - Biofuels (2010: 5.75; 2020: 10%, targets as shares)

Policy update 2008

- Renewable Energy Directive Proposals (1/2008)
 - National Targets for share of RE by 2020, 20% for EU
 - Transport: 10% of final consumption of energy
 - But: need 35% GHG emissions reductions
 - Not from land with high biodiversity, carbon stock and EU raw materials must meet minimum standards
- Sept 2008 Parliament: Confirm 10% but 2015 is reduced to 5% share
- In reality targets are 4% and 6% respectively

Are these short-term objectives implied by the overarching long-term CO₂ target?

What are the implications of the overarching target on road transportation?

Bruxelles, 26 novembre 2008

Modelling framework

• IMACLIM-R

- A recursive hybrid CGE model
- The world economy in 12 regions and 12 sectors
- Transportation as 3 distinct sectors + a specific household modal trade-off (s.t. budget and time constraint)
- Specifically dedicated to BU integration
- POLES
 - A recursive model of global energy systems
 - 48 reg., ca. 25 final uses, endogenous primary markets
 - Transportation: vintage car fleets, 2 other agg. fleets
- Soft-linking through iterative convergence

2 contrasted scenarios: REF vs F4 (450ppm)

- Reference scenario (REF)
 - Main drivers: labour productivity and demographics
 - Benchmark carbon policies (up to €30 per ton CO₂ in 2050)
 - NB: sustained European growth
- Factor 4 scenario (F4)
 - Global carbon profile compatible with 450 ppm stabilisation, close to WRE after 2010 = massive emissions reductions
 - EU 37% of 1990 levels in 2050
 - Through scaling up benchmark carbon prices

REF vs F4: emissions

REF vs Stab450-F4: growth (av. annual GDP growth rate)

REF	2001-15	2016-30	2030-50	2001-50
Europe	2.1%	2.1%	1.4%	1.8%
Other industrialised countries	2.1%	1.8%	1.8%	1.9%
China and India	5.3%	2.3%	1.7%	2.8%
Fossil fuels exporters	4.4%	3.2%	2.3%	3.1%
Rest of the world	4.2%	3.7%	2.0%	3.1%

F4	2001-15	2016-30	2030-50	2001-50
Europe	1.6%	1.2%	1.4%	1.4%
Other industrialised countries	2.1%	1.5%	1.9%	1.8%
China and India	5 .0%	2.3%	2.3%	3.0%
Fossil fuels exporters	4.2%	2.4%	1.8%	2.6%
Rest of the world	4.1%	3.4%	2.4%	3.1%

Total on-road mobility

Virtually no impact on mobility!

Bruxelles, 26 novembre 2008

Technology of the LDV fleet

Limited technology impact, beyond 2020 only

Energy consumption

Strong efficiency gains beyond 2015

EHESS FT CNRS - UMR

Tailpipe CO₂ emissions

As per the evolution of fossil fuels consumptions

Target	Year	Objective	REF scenario	F4 scenario
Share of biofuels	2015	5%	0.92%	0.94%
Share of biofuels	2020	10%	0.98%	1.04%
LDV CO ₂ emissions, vintage average	2012	120 g/km	148 g/km	146 g/km
LDV CO ₂ emissions, vintage average	2020	95 g/km	136 g/km	130 g/km

Targets are missed... quite insensitive to scenario

Conclusions

- A dramatic EU F4 emissions scenario
 - Has no impact on road mobility
 - Rather, induces efficiency gains and technology switching
 - Because of low price response and fleet inertia, does not strongly impact road transportation before 2020
- 2012 to 2020 specific transportation targets are unaffectedly missed
 - Policy instruments beyond general carbon pricing are a necessity if targets are to be reached (... why?)
 - Policy initiative might induce extra costs with potentially strong impact on competitiveness

