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What to do about climate change?

� What is the optimal path for a carbon tax 
and/or an emissions path?
� Emissions taxes
� Cap and trade
� Emissions standards

� What is the optimal investment path in a 
portfolio of technology R&D projects?
� Government funded R&D
� R&D subsidies
� Technology standards
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Today’s Talk
� Background: Decision Making Under Uncertainty

� Optimal Abatement Under Uncertainty
� Uncertainty and Endogenous Technical Change

� Uncertainty in damages and uncertainty in technical change 
interact, so must model both.

� A Framework, applied to Solar PV R&D 
� Expert Elicitations
� Impacts on Abatement Cost Curve
� Random Returns to R&D

� Future Work
� Implement probabilistic data into policy models



Decision Making Under 

Uncertainty 
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Impacts of Uncertainty and Learning on 

optimal abatement
� Baker (2005), Gollier et al. (2000), Karp and Zhang (2006), Keller 

et al. (2004), Kolstad (1996), Manne (1996), Nordhaus and Popp 
(1997), Pizer (1999), Ulph and Ulph (1997), Webster (2002)

� In the absence of learning, optimal abatement is probably higher
as uncertainty increases.

� Assuming learning, optimal abatement is probably lower as 
uncertainty increases.
� Prudence can reverse this.
� Certain increases in risk reverse this.

� Numerical impact of uncertainty (with learning) appears small.
� Value of Information of better, sooner information is high.
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Endogenous Technical Change

� Buonanno et al. (2003), Goulder and Mathai (2000), 
Goulder and Schneider (1999), Manne and Richels
(2004), Nordhaus (2002), Popp (2004, 2006), Schneider 
and Goulder (1997), Sue Wing (2003), van der Zwaan et 
al. (2002), Newell (1997), Newell et al. (1999). 

� Most of the work has been deterministic 
� deterministic damages and/or stabilization goal
� deterministic technical change



Uncertainty Matters

Explicitly including uncertainty and endogenous 
technical change

Baker, E., Clarke, L., and Weyant, J., Optimal Technology R&D in the Face 
of Climate Uncertainty. Climatic Change 75:157 – 180 (2006) 

Baker E. and Adu-Bonnah, K., Investment in Risky R&D Programs in the 
face of Climate Uncertainty. Energy Economics, (Forthcoming).

Baker E. and E. Shittu, Profit Maximizing R&D Investment in Response to a 
Random Carbon Tax, Resource and Energy Economics, 28:105- 192 
(2006) 
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Socially Optimal R&D investment 
Baker & Adu-Bonnah (2006)

� We consider how optimal R&D investment is 
impacted by
� The choice of R&D program (greener vs. cleaner);
� The riskiness of R&D program; and 
� Uncertainty and learning about climate damages.
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Integrated Assessment Model

� William Nordhaus’s DICE
� Optimal Growth + Climate Model

� Social Planner chooses how to divide income 
between consumption, investment, and emissions 
reduction.

� Added uncertainty, using stochastic 
programming.
� First 5 periods decisions are made under 

uncertainty
� After 5 periods the world splits into three damage 

scenarios.
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Greener Technologies
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We model technical change in two ways
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Integrated Assessment Model

� Added R&D as a decision variable.
� One time decision in 1st period before learning
� Cost reduction implemented in 50 years, after 

learning about damages.

value probability
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We represent increasing risk in climate 

damages in two different ways.

0.8%1.3%1.8%0%Probability of θ = θH

78.4%78.4%78.4%100%Probability of θ = .0035

20.8%20.3%19.8%0%Probability of θ = 0

.1.057.042--Value of high damage θH

Increasing Probability

Increasing Damages

8.3%5%1.8%0%Probability of θ = .042

0%45%78.4%100%Probability of θ = .0035

91.7%55%19.8%0%Probability of θ = 0
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Greener Technologies 
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Conclusions for socially optimal R&D 
Baker & Adu-Bonnah (2006)

� Optimal investment is significantly higher in R&D 
programs aimed at reducing the cost of low-carbon 
technologies when the program is riskier.
� Policies should be aimed at increasing the probability of a 

breakthrough.
� Investment in alternative technologies should be 

higher than deterministic studies would indicate.
� Rationale for government policy, since private sector 

tends to be risk-averse.
� Result is robust to many different probability distributions 

over climate damages.
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� The risk-profile of R&D programs aimed at reducing 
emissions in conventional technologies is largely 
unimportant.
� Policies should be aimed at maximizing expected value of 

technical change.
� Deterministic studies should give a good approximation of 

appropriate level of investment.
� Less rationale for government policy.
� If the probability of full abatement is high, then investment 

in risky program increases.

Conclusions for socially optimal R&D 
Baker & Adu-Bonnah (2006)
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Conclusions for socially optimal R&D

Baker & Adu-Bonnah (2006)

� The level of investment in a climate-
technology R&D program depends on 
� How the technology impacts the abatement cost 

curve;
� The riskiness of the R&D program; and
� The probability distribution over climate damages.
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Conclusions for socially optimal R&D

Baker & Adu-Bonnah (2006)

� The level of investment in a climate-technology R&D 
program depends on 
� How the technology impacts the abatement cost curve;
� The riskiness of the R&D program; and
� The probability distribution over climate damages.

� Therefore, we need to answer some questions:
� How will different technologies impact the MAC, if 

successful?

� What is the probability distribution over different outcomes 
of technical change?
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Research Plan

� Collect Expert Assessments of 
Potential R&D Projects

� Determine Impact on MAC, using 
MiniCAM

� Develop portable representations of 
the probabilistic impact of technical 
change. 

MiniCAM calculations of 
impact on MACprobabilities
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Expert Elicitation

� Elicit probabilities from experts.
� What is the probability of technical success 

given a particular funding trajectory?
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Expert Elicitation

� Elicit probabilities from experts.
� What is the probability of technical success 

given a particular funding trajectory?
� Scientific advance is lumpy – it can’t be 

inferred from past data.
� To the extent that probability of achieving success 

depends on breakthroughs, what has happened with 
other technologies will not offer much to differentiate 
paths that are particularly promising.
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US Greenhouse Gas Emissions Allocated to 
Economic Sector : April 2002

Commercial 
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Assessments:

Identify More Specific Technical 

Directions within Broad Categories

New Inorganic
CIGS

Purely Organic

3rd Generation

Advanced Solar:

Biofuels

Nuclear Fission

Carbon Capture and Storage & 
Combustion

Batteries

Wind and Solar Grid Integration

Bio-electricity

Advanced Solar PVs
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Each definition of success results in a 
cost per kWh

2.9

5.0

5.0

3.0

5.0

Cost 
(cent/kWh)

12.436%, 30 year, $100/m24.  3rd Gen

7.215%, 30 year, $50/m23.  CIGS

7.215%, 30 year, $50/m22.  New 
Inorganic

1231%, 15 year, $50/m21b. Purely 
Organic

7.215%, 30 year, $50/m21a. Purely 
Organic

Cost 
improvement 
metric

Definition of successTechnology
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Assessment Survey

Assumptions: U.S. government funding trajectory of $15M/year for
10 years, i.e., 10 full sized research groups with approximately
10 graduate students each, with technology to leave university 
labs after that. 

By the end of that time, what is the probability that:
At least one molecule will be found that achieves 15% efficiency
Probability: ____________. 

Rationale: 
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Assessment: Purely Organic Solar 
Cells
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Assessment: Four Categories
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Research Plan

� Collect Expert Assessments of 
Potential R&D Projects

� Determine Impact on MAC, using 
MiniCAM

� Develop portable representations of 
the probabilistic impact of technical 
change.
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Impact of solar on the MAC:
20% capacity limit

Marginal Cost of Abatement
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Impact of solar on the MAC:
With free storage

Marginal Cost of Abatement
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The combination of low cost storage 
and a breakthrough in solar costs has 
a significant impact

Marginal Cost of Abatement
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We are combining expert elicitations with MiniCAM to derive 

random Marginal Abatement Cost curves

� Collect Expert Assessments of 
Potential R&D Projects

� Determine Impact on MAC, using 
MiniCAM

� Develop portable representations of 
the probabilistic impact of technical 
change. 

MiniCAM calculations of 
impact on MACprobabilities
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Representing the Impact on the MAC

� We estimate a kind of sufficient statistic to 
represent the impact of technical change on the 
MAC

� We propose that the impact of solar can be 
modeled as follows:

( ) ( ) ( ); 1 lnMC MC kµ α µ α µ= + +  
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We are working on similar 
representations for multiple technologies

Biofuels

Nuclear Fission

Carbon Capture and Storage & 
Combustion

Batteries

Wind and Solar Grid Integration

Bio-electricity

Advanced Solar PVs



Future Work 
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MiniCAM calculations of 
impact on MAC

probabilities

Technology Policy Models

Probability 
distribution 
over climate 
damages
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Random Marginal Abatement Cost curves can be combined 
with random damages in Technology Policy Models.
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Implementing the data into policy models
� Implement data in DICE and in a 

DA R&D Model
� What are the interactions between 

individual technologies?
� How does increasing risk in damages 

interact with the optimal portfolio of 
technologies? 

� In which categories are riskier 
technologies more attractive than 
incremental technologies? 

� What is impact on optimal abatement 
of having a portfolio of technologies 
available? 

� What is impact on optimal abatement 
of riskiness of portfolio available? 

� Are some portfolios robust, in that 
they are almost optimal for a wide 
variety of damage probabilities? 

� Value of better information on 
technical success?

zero 
carbon

coal & 
ccs

biomass

vehicles

?
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How does this analysis compare to other 

climate change policy analyses?

� We are taking a portfolio approach to analyzing 
climate change technology policy.

� We will be able to incorporate uncertainty in both 
climate damages and in technical change. 

� Our representation of technical change is data-
driven
� At this point very little is understood about how technical 

change will impact the abatement cost curve; nor about 
the returns to R&D
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Conclusion

� Modeling uncertainty is important for near-term technology 
policy. 

– Different types of technical change have different implications
� Expert Elicitations provide data for uncertainty analysis.

– Integrating expert elicitations with case studies and econometric 
data is a promising avenue for improving the empirical basis of 
uncertainty analysis.

� We are integrating multiple modeling paradigms to analyze this 
problem. 

– A number of frameworks for integrating IAMs with uncertainty 
analysis are currently being developed.

This research is partially supported by the Office of Science 
(BER) U.S. Department of Energy, Grant No.DE-FG02-
06ER64203. With Leon Clarke, Jeff Keisler, Matthias 
Ruth, Detlof von Winterfeldt, and John Weyant. 


