An ex-ante cost effectiveness analysis of lignocellulosic bioethanol promotion policy in Japan

Kenji, ASANO

System Engineering Research Laboratory
Central Research Institute of Electric Power Industry
(CRIEPI)

FEEM TranSust conference 27-28th September 2007

1. Introduction: background information

Trial calculation of bioethanol production costs

4. CO2 reduction costs by bioethanol

1. Kyoto Protocol and present status in Japan

13.8% additional reduction required by 2008-2012

1. Prospect of Bioenergy until 2010

RCRIEPI

- New energy: 1.8% in TPES(2003) to 3%(2010)
- Half of total New Energy (2010) from Bioenergy

New Energy Introduction Target		FY2003	FY2010 target	
Power generation field	Photovoltaic power generation	210,000 kl (860,000 kW)	1,180,000 kl (4,820,000 kW)	
	Wind power generation	276,000 kl (678,000 kW)	1,340,000 kl (3,000,000 kW)	
	Waste power generation + Biomass power generation	2,137,000 kl (1,739,000 kW)	5,860,000 kl (4,500,000 kW)	
Thermal utilization field	Solar thermal utilization	690,000 kl	900,000 k1	
	Thermal utilization of waste	1,610,000 kl	1,860,000 k1	
	Biomass thermal utilization	790,000 kl	(*1) 3,080,000 kl	
	Unused energy	42,000 kl	50,000 kl	
	Black liquid, waste material, etc.	4,780,000 kl	4,830,000 k1	
Total (rate in total primary energy supply)		10,540,000 kl (1.8%)	19,100,000 kl (about 3%)	onferen

27th SEP 2007

^{*1} Includes biomass-derived fuel (500,000 kl) for transportation.

1. "ambitious" biofuels targets

- Japan set "ambitious" biofuels targets by domestic biomass
 - ➤ By 2010: 500 million Liter of Oil Equivalent (LOE), equal to 760 million L bioethanol (0.8% of petrol consumption in Japan)
 - > By 2030: 3600 million LOE, 6000 million L bioethanol (10%)
- However Japan is very limited for domestic biofuels productions
 - > The present biofuels production: Bioethanol 30kL and BDF 5million L
 - Japanese food self-sufficiency ration
 - •How to achieve 500million LOE by 2010?
 - -Petroleum industries: 210m LOE
 - -Import from Brazil: 140m LOE
 - -Domestic: MAFF+MOE= 40m LOE
 - -Shortage 100m LOE...import from Brazil??

1. Research objectives

Focus on the 2nd generation bioethanol

- Like other industrialized countries: food competition, GHG reduction potentials...
- > Low food self sufficient ratio
- Huge lignocellulosic biomass potentials in Japan
 - Rice husk, rice straw
 - Woody biomass

Three research objectives

- 1. Potential estimate lignocellulosic bioethanol in
- 2. Trial calculation of bioethanol production costs
- 3. CO2 reduction costs by bioethanol

1. Methodology

Setting the optimal transport distance

- ➤ Biomass feedstock costs estimate in the 50km radius, according to Fujimoto et.al (2004)
- > 8 lignocellulosic feedstock costs including transportation costs

2. Production cost both the present case and the innovative case

- ➤ The present case: Saccharification with strong sulfuric acid, so called NEDO(New Energy and Industrial technology Development Organization) process
- > The Innovative case:
 - Innovation in saccharification and fermentation process
 - Saccharification without sulfuric acid, AIST(National Institute of Advanced Industrial Science and Technology)

Up scaling factor in ethanol production plant

1. Introduction: Saccharification and fermentation process

1. Introduction: background information

Trial calculation of bioethanol production costs

4. CO2 reduction costs by bioethanol

2 Potential estimate bioethanol production in Japan

- Feedstock and innovation in logistics
 - 8 feedstock: Waste timber from construction, By-product from lamwood manufacture, Branches, Thinned wood, Rice husk, Rice straw, Logging residue, Unutilized bamboo, bamboo glass

- Innovation in logistics
 - The present case: Potential minus Material use with the existing collecting process
 - The innovative case: innovation in collecting process
- Bioethanol potential and feedstock costs in the 50 km radius, the optimal transport distance in Japan
- 3. Innovation in saccharification and fermentation process
- I. The Present case: NEDO Process:244L/dry-t wood

 1. The Present case: NEDO Process:244L/dry-t wood

 1. The Present case: AISTProcess:366L/dry=twvcoodust conference

2 Potential estimate bioethanol production in Japan

- Bioethanol potentials are very limited within the 50km radius
 - The Present case: 20million L in the 50km radius, total 1 billion L
 - The Innovative case: 120 million L, total 5.8 billion L, equal to 10% of transport fuel consumption

1. Introduction: background information

Potential estimate lignocellulosic bioethanol production in Japan

Trial calculation of bioethanol production costs

4. CO2 reduction costs by bioethanol

3 Calculation of bioethanol production costs

Bioethanol production costs: 5 costs contents

Feedstock costs

Plant costs

Personnel costs

Operational Maintenance costs

- Up scaling factor: Biomass projects tend to strong "economies of scale"
- Yamada et. al (2006): 0.67 for lignocellulosic bioethanol plants

$$\frac{\text{Cost}_2}{\text{Cost}_1} = \left(\frac{\text{Size}_2}{\text{Size}_1}\right)^{0.6}$$

3 Calculation of bioethanol production costs

Assumption of calculation

- 1. Basic plant information
 - Plants size: 20 million litter per year in the present case and 70 million litter per year in the innovation case
- 2. Plant costs (Construction costs)
 - 20million L=3.8 billion JPY
 - according to Yamada et. Al (2006)
 - Up scaling factor: 0.68
 - Depreciation period 15years, interest rates 4%
- 3. Personnel costs
 - Personnel costs per person: average yearly personnel costs 4.67 million JPY
 - Number of person: up scaling factor 0.27
- 4. Operational costs
 - 3% of construction costs
- 5. Others
 - No initial subsidies

costs

The optimal scale questions

- The present case: 20 million litter per year, Feedstock amount 1000 t/year,
- The innovative case: 70 million litter per year, 208,000t/year

3 Calculation of bioethanol production costs

- The present case: 98 JPY (62cents)/ L of petrol equivalent
- The Innovative case: 58.1 JPY(36cents)/ L of petrol equivalent

1. Introduction: background information

- Potential estimate lignocellulosic bioethanol production in Japan
- 3. Trial calculation of bioethanol production costs
- 4. CO2 reduction costs by bioethanol

4 CO2 reduction costs caliculation

- Bioethanol: cost effective only more than 70\$/bbl case
 - The existing study: 20,700JPY-34,700JPY (120-200Euro) /CO2-t in Japan
 - Bioethanol: 7,000JPY-32,000JPY(45-130Euro)/CO2-t
- CO2reduction costs highly depend on oil price
 - Huge fluctuation of CIF oil import price 24\$/bbl(Jan.1997)→60\$/bbl(Jan.2007)

5 Conclusions

- lignocellulosic bioethanol potentials are very limited within the 50km radius
 - The optimal size of bioethanol plants are: 20 million litter per year in the present case and 70 million litter per year in the innovative case
- Bioethanol production costs: competitive without petrol taxes
 - The present case 98 JPY(62Euro cents)/L, and the innovative case 58.1JPY (36 Euro cents)/L
- **III.** CO2 reduction costs: not cost effectiveness
 - The present case: 78,000–150,000JPY/ CO₂,
 - The innovative case: 7,000-32,000 JPY(45-130Euro)/ CO₂ only in high oil price 70 to 90USD/bbl
- Promoting bioethanol in Japan
 - important for energy security points of view
 - nard to recommend as GHG mitigation option TranSust conference

References

- Fujimoto, S., et al.(2006), Economic and Environmental Evaluation of Biomass-fired Power Generation in Japan, International Energy Journal, Vol.7(3), pp.195-199.
- Kampman, B., et al. (2006), Cost effectiveness of CO₂ mitigation in transport, CE Delft
- The Japan Institute of Energy (2004) (in Japanese),
 Bioenergy potential in Japan
- Yamada et.al.,(2006)(in Japanese), Proceeding of BSC, pp.28-29
- Ryan , L . et al . (2006); Stimulating the use of biofuels in the European Union: Implications for climate change policy , Energy Policy